DISPROPORTIONATION OF OLEFINS WITH TUNGSTEN CARBONYL DERIVATIVES AS HOMOGENEOUS CATALYSTS

L. BENCZE AND L. MARKÓ

Institute of Organic Chemistry, University of Chemical Industries, Veszprém (Hungary) (Received November 6th, 1970)

SUMMARY

Carbon monoxide increases the catalytic activity of mixtures of tungsten halide complexes with EtAlCl₂ towards disproportionation of olefins. Probably tungsten carbonyl complexes are formed.

INTRODUCTION

Halide complexes of tungsten in combination with EtAlCl₂ or AlCl₃ have been reported to be homogeneous catalysts for the disproportionation of olefins¹⁻⁵. We have now found that carbon monoxide increases the activity of some catalyst systems of this type, presumably through formation of tungsten carbonyl derivatives.

RESULTS AND DISCUSSION

A solution (5 ml) of cis-2-pentene in n-pentane (1/1) and 0.05 ml of $EtAlCl_2$ was added to a suspension of 29 mg WPy_2Cl_4 in 5 ml benzene. After 1 h, the mixture was hydrolyzed and analysed by GLC. Based on the quantity of cis-2-pentene introduced, the reaction product contained 14.1% 2-butene, 45.7% 2-pentene and 27.3% 3-hexene. The rest of the olefin was converted to polymers.

Several parallel runs were performed with the same catalyst under Ar and CO. After 15 min reaction the conversions of 2-pentene ranged between 7-22% under Ar and 48-51% under CO; since the equilibrium composition was reached under carbon monoxide the rate of reaction must be rather high. This was confirmed by use of even shorter reaction times: conversion of 2-pentene was 40.6% after 1 min, 41.8% after 3 min and 47.2% after 5 min.

The infrared spectra of the reaction mixtures (or those of blank experiments without olefin) always showed strong absorption bands in the 2100–1800 cm⁻¹ region, pointing to the formation of tungsten carbonyl derivatives. This suggested that tungsten carbonyl complexes might also be active as disproportionation catalysts. Accordingly, 5 ml of a solution of cis-2-pentene in pentane (1/1) containing 0.05 ml EtAlCl₂ was added to a suspension of 0.05 g W(CO)₃(PPh₃)₂Cl₂ in 5 ml chlorobenzene under Ar. A homogeneous solution was formed, the colour of which changed

from blue through green and yellow to red. At the same time a number of C-O stretching bands appeared between 2060 and 1890 cm⁻¹. These bands do not belong to the original tungsten carbonyl complex, since this is insoluble in chlorobenzene. After 1 h, the reaction mixture was hydrolyzed and GLC analysis indicated the presence of 13.4% 2-butene, 49.7% 2-pentene, 26.2% 3-hexene and traces of higher olefins.

Carbon monoxide not only increased the rate of disproportionation, but also had a beneficial effect on the selectivity of the catalyst system, especially when a terminal olefin was used. Thus the catalyst system obtained from $W[C_2H_4(PPh_2)_2]_2$ -Cl₃ and EtAlCl₂ (molar ratio 1/10) at 0° transformed 90% of the initial 1-pentene in 15 min to a mixture of gaseous and liquid olefins, the latter composed of about equal quantities of 2-pentenes, hexenes, heptenes and octenes. When the same catalyst was used under Ar, a strong isomerising activity was observed, giving mainly trans-2-pentene; only about 2% of the original olefin reacted by disproportionation.

The reactions leading to the active catalysts seem to be rather complex. It was found, for example, that if the $W[C_2H_4(PPh_2)_2]_2Cl_3 + EtAlCl_2$ catalyst solution was stored under CO for some time before use, it completely lost its activity for disproportionation of terminal olefins and became a very active polymerisation catalyst.

These marked effects of introducing carbonyl ligands into the catalytic complexes are being further investigated.

REFERENCES

- 1 N. CALDERON, HUNG YU CHEN AND K. W. SCOTT, Tetrahedron Lett., (1967) 3327.
- 2 N. CALDERON, E. A. OFSTEAD, J. P. WARD, W. A. JUDY AND K. W. SCOTT, J. Amer. Chem. Soc., 90 (1968) 4133.
- 3 E. A. ZUECH, Chem. Commun., (1968) 1182.
- 4 J. L. HERISSON, Y. CHAUVIN, NHU HUNG PHUNG AND G. LEVEBRE, C.R. Acad. Sci. Ser. C, 269 (1969) 661.
- 5 E. A. Zuech, W. B. Hughes, D. H. Kubicek and E. T. Kittleman, J. Amer. Chem. Soc., 92 (1970) 528.
- J. Organometal. Chem., 28 (1971) 271-272